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Short Papers

On the Performance of the Least Squares Method for

Waveguide Junctions and Discontinuities

R. JANSEN

. Abstract—The high computational expenditure of the least squares
boundary residuaf method restricts its application to certain prob-
lems. It is therefore necessary to utilize the inherent simplicity of
special casestogether with convergence-optimization criteria in order
to reduce computational time and storage requirements. The problem
of the coaxial-to-circular waveguide junction is presented as an
illustrative example of how this is performed. A selection criterion is
also suggested to determine the optimum weighting factor.

INTRODUCTION

Attention has lately been directed to the solution of boundary-

value problems by the method of least squares [1], [2], an essen-

tially variational method which was first presented by Plcone in

1928 [3]. This method is useful because of its universal applicability,

its ability to produce upper and lower bounds, and its property of

ensured (nonrelative) convergence [1]. It allows bounds to be gen-

erated simply by means of varying a weighting factor [1], and in

thk compares favorably with the dkect application of the calculus

of variations, a technique which requires separate formulations for

each bound [6], [7]. On the other hand, convergence is slower than

that obtained from the Ritz method [3], [4], if one does not take

care of singularities explicitly, and usually large complex matrices

must be dealt with. Therefore, as long as an a priori determination

of the optimum-convergence weighting factor does not exist, it is of

essential importance -, ith least squares methods for the program

and the formulation to utilize the simplifications possible in special

cases.

Such special situations prevail, for example, in the following cases:

the planar infinitely thin discontinuity in an otherwise homogeneous

waveguide, structures which exhibit special symmetries, and wave

guide junrtions with pure boundary reduction or enlargement. The

coaxial-to-circular wavegnide junction belongs to the latter class

and will now serve to illustrate the time and storage saving perform-

ance of the method.

PERFORMANCE OF THE METHOD

Consider the waveguide junction in Fig. 1 together with the follow-

ing conventional truncated modal expansions for the transverse

field at z = O:

E,PI = tO1(l + To) + ; tJ_4;- in region I
~=~

H,F.1 = (1/ZP#) (e. X t#) (1 – ro) – ~ (1/Zr;’) (e. X tiI)A~-
,=,

Ej#l = i t# (1 + rk)llk+ in region II
k=l

Hw1l = j (l/ZFkll) (e. X &ll) (1 – r~)l?~+. (1)
k=l
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FREQUENCY f

Fig. 1. Normalized susceptance b versus frequency. Dimensions are:
d = 1 mm, Rx = 3 mm, R. = 7 mm, relative dielectric constant 6, = 9.

Here t~l,t# are the real orthonormtilzed transverse-vector mode

functions (to1 for the TEM mode which is the excitation with ampli-

tude AO+ = 1; AO- = n); A i– and Bk+ denote the corresponding

complex amplitudes; rh = Bk–/Bh+ = — exp ( ‘2~h @ are the mode

reflection coefficients; ZFil and Z,mII represent wave impedances,

and e. is the z-directed unit vector. Because of the rotational sym-

metry of the structure and the excitation field only TMcm modes

have to be taken into account.

For the calculation of r, or the normalized input atilttance

w = @ = (1 – To)/ (1 + To), the matrix MP+N Which corresponds

to the positive Hermitian form

%

//

R{
FP+N = I EtNII 1’ T dr dp

00

2T

//
%+ (1Ew1 – EtNII [2 + Z2. \ H~P1 – H~N1l Iz)r dr dp

o R<

(2)

has to be constructed [1], [2]. The quantity Z in (2) is a conver-

genc~optimizing electric-to-magnetic weighting factor.

In addition to reducing the set of mode functions by virtue of

structural symmei,ry, it is possible to save computer time by making

use of the fact that the fields in (1) have been split into real ortho-

normal vector functions and complex scalars. This is performed by

first generating a real symmetric auxiliary matrix G with elements

2T E.

G,z =
//

tk%w dr dp; m = 1,11 and n = 1,11 (3)

o R;

containing the comp~ete information about the geometry of the

problem, whereas the frequency-dependent information is included

in the complex values Z#, Z~hlI, and r~ which are stored in linear

arrays.

The splitting procedure indicated above applies for least squares

methods in general. For the special case under consideration, there

is an additional advantage since G contains the (P + 1) X (P + 1)

identity matrix as a submatrix, indicating that (P + 1) of the

(1’ + 1 + N) unknown amplitudes can be eliminated. This is a

consequence of the pure boundary enlargement that prevails in the

problem. This property of the matrix G is transferred to the positive

definite Hermitian matrix Cp+~ (MP+~ with its first row and column

omitted) insofar as CP+N possesses a (F’ + 1) X (P + 1) dlagomd

submatrix D. With reference to [1], the set of amplitudes which
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minimizes FP+N

equations

r‘rO

could be calculated from the system of linear

cp+N”14=t*T:l”h’:l=[l=“)
with the excitation vector “P+N extracted from the first column of

MP+N. However, elimination of the Ai– leads to the equivalent

system

[1

CJo

C. V.[B,+]= [B– A*~.D-’..[B, +]=+]= [V,] –[A*~.D-’].

o

N

To = (1/D1l) (Vo — ZAIJL+) (5)
k=l

which is governed by the likewise positive definite Hermitian matrix

C,Vof reduced orderlv XN. Hence theproblem maybe viewed as

that of minimizing a modified functional .Fjv with corresponding

matrices MN and C~, respectively. As a result, in its solution there

is considerable saving of storage and running time.

SELECTION CRITERION FOR THE

WEIGHTING FACTOR Z

Let N denote the order of the matrix CN, and Etiv,Ht,v,the cor-

responding approximate field solutions. E~,Hi is the exact solution of

the boundary value problem considered. Since for any finite Z the

method ensures convergence of the fields in the mean [1 ], [3], [4],

there exists an integer number NO such that

o<lll Etll–l\ EtN\\l<ll Et– Et~ II SCE(Z)

and

o<l\l Htj\–l\ HtN\ll<ll Ht– HtN 11<~~(-z) (6)

is satisfied for any N > NO and a given range of Z, with the norms

defined in accordance with (2). In addition, as the boundary operator

representing the problem is defined on the complete set of functions

of finite norm til,t~ll,the norms of Et,H~ must also be bounded [4]

so that the edge condition is not violated as indicated by Davies

in [1].
Convergence of E,N as defined in (6) implies that scalar muh5i-

plication of EiN1 by &J and term-by-term integration of the series

in (1) are allowed even if the upper summation limit goes to infinity

[4]. Together with the Cauchy-Bunyakovsky inequality [4] this

yields

l?i)-~,’l=

1/

(,73,’ – E,AJ) to’ dF
region I

< ]\ E,’ –E,.v1 II < ~~(Z). (7)

With jb = (1 – TO)/ (1 + ro) it can be concluded that the conver-

gence of the approximate susceptance b“ to its exact value b for any

finite range of Z exists [uniform convergence of bN (Z)], and the

convergence rate of bN is in some way governed by that of the

field Ewl.

The slope of the curves bj.?versus matrix size N is defined as

dbN (Z)
— = bN(z) – bN+, (z).

dN
(8)

Hence it follows from Cauchy’s criterion for the existence of a hit

[5], that with

db,v(.z)
— =lbN–b’+, l<201bN–bl<2-~6(z)

, dN
(9)

a minimization of the modulus of the slope with respect to the

weighting factor is necessary in order for the error in b,v to be small.
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This minimum exists because b,v with Z is stationary, in agreement

with the remarks of Oraizi and Perini [2].

Consider then a range of weighting factors 21< Z < Z. inclu&Ing

the optimum Z = Z.P~ and an integer N = No which leads to an

inequality of the form (9) for all of these values of Z. N1 denotes

a matrix size which is large enough to ensure that [ bN1 — b I S &

with Aeb << min [~b (21), ~b(Zu) ~ is valid for a givemrequired accuracy

of AC* which is not a function of Z. Under the assumption of mono-

tonical behavior of b.v (Z) as a function of N, except in the close

vicinity of Z.P6, the slope of bN at the beginning of the interval

N, < N < N, is greater than its mean value given by

(lo)

This assumption can be justified by the ability of the method to

produce variational bounds [1], and has also been verified by

experience. Hence it follows that

db’(z) db’ (Z)
<2.lb.v(Z) –b\ivO ~2. (N1 –No). ~

dN N, – NO

(11)

where the symbol < denotes approximate inequality. The relation

expressed in (11) justifies the selection of the weighting factor Z for

a not too small value of N so that the modulus of the slope of bhr (Z)

is minimized.

From the curves of the calculated susceptance bx (Z) and the

corresponding reflection coefficients rON illustrated in Fig. 2 it can be

seen that the power-conservation principle of Oraizi and Perini [2]

is not an optimum criterion for the selection of Z. However, there is

agreement for the values of weighting factors in the range of 0.02 ..-

502..,.
Another more intuitive approach for determining an optimum

value of Z is based on the fact that if the single error contributions in

(2) have the correct weighting physically, then the convergence

must be rapid. Otherwisej the terms cent aining the electric field

alone would also have to be weighted relative to each other. This

suggests that the weighting factor should be chosen as

llEtN’11

“1 = ]IH,NIII “
(12)

ZN1 converges automatically to the physical 21 as the mode number

N is increased. Z# can be found by the following iterative procedure:

, _ II ~,#(zNv’) II
‘N’+’– II ~,,v’ (ZNV’) ]\ ‘

ZJVO1= 120~. (13)

1,

\

, , I 1 1

10 20 30 Lo 50

MODE NUMBER N

(a)

:07
w
~

f
z ~—

10 20 30 40 50

MODE NUMBER N

(II)

Fig. 2. (a) Normalized susceptance b versus matrix size N for different
Z and near optimum N/P. The dashed and the dotted curves refer to
optimization with Z.~t and ZN1, respectively. NIP = 113/6;f = 1 GHz.
(b) Corresponding I ro I as a measure of power conservation. f = 1 GHz.
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Inactual useitis observed that (13) converges very rapidly, so that

three iterations are sufficient with Ar = 30 for a wide range of

dimemiom and frequencies. Furthermore, in any of the cases con-

sidered the iterated weighting factor Z# turned out to be of the

order of that Zo,~ which was found by minimizing ldb~(Z)/cZNl.

For example, in Fig. 2 the values of Z# and Z.., differ by a factor

of about 3.5.

NUMERICAL RESULTS

Theinput admittancey =y%of theresonating structure shown in

Fig. 1 was computed and is plotted as a function of frequency. Series

resonance occurs when the capacitive gap compensates the input

impedance of the propagating circular l?ol mode. The validity of the

program has been tested by comparison with Marcuvitz’ results for

thecapacitive gapat low frequencies, which issameas the problem

considered here with c, = 1 [S]. Generation of the orthonormalized

functions t.r, tkI1, andthe elements of thematrix Gtakesabout30s

of CPU time on a CDC-6400 computer for the sum of the modes

N +P = 80. The CPIJtime required forthegeneration andinver-

sionof a50 X 50conlplex C~-nlatrix isabout5s.

Fig. 2 shows the dependence of the least squares solution bN on

weighting factor Z and mode number N. At the same time an error

estimate is provided, since a change of sign exists for the slope of

bN(z). For comparison, the deviation of lr,~(Z) \ from its ideal

value I ro \ = 1 is also plotted as a measure of power conservation

in Fig. 2.

The dashed curve in Fig. 2 -refers to susceptancw which were

computed by minimizing I db~(Z)/dN I with respect to Z at given

values of Ar. The utilization of the iterated weighting factor ZNK

requires less computer time and results in the dotted curve.

In ad{ltion to thk, the influence of the upper summation limits N

and P on the convergence rate has been studied because the ratio

N/F’ plays an important role for methods which exhibit relative

convergence phenomena [9], [10]. In Fig. 3 the dependence of

bNonthis ratio is shown asa function of themodenumber N. The

trend of the minimum value of FN decreasing with N for a fixed

Z = Z..t asseen from Fig. 3 serves as a measure of the convergence

rate. It has been found generally that it is sufficient to choose N/P in

accordance with point-matching methods, so that in the present

case, the near-optimum valueof N/P = R./(R= — Ri) lies between

10/5 and 10/6. This coincides with the behavior of FN shown in

Fig. 3 having its maximum average slope FIO/F50 around this ratio
of N/P.

:102

I’r

N/P
%1-
~ 1,01
LJ
ul 10/6
. 1IVs%
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/
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MODE NUMBER N
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Fiz. 3. (a) lnfluenceof theiV/P ratio onthe convergence of bfor near
optimum Z. Z/Zo = 8; f = 1 GHz. (b) Corresponding Hermitian
forms FN. The average slope Fw/Fiio serves as a measure of convergence.
f =lGHz.
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The Solution of Electromagnetic Eigenvalue Problems

by Least Squares Boundary Residuals

HUGH J. A. LARIVIERE AND

J. BRIAN DAVIES, MEMBER, IEEE

Abstract—The least squares boundary residual technique as used

for the numerical solution of scattering problems is extended to the

solution of electromagnetic eigenvalue problems. The theory is de-

scribed and numerical results are given for the solution of an L-

shaped membrane and microstrip in a hollow conducting guide. The

microstrip example was chosen as a test case to compare with Fourier

matchkg. This least square error mirnhnization technique is of the

same family as point matching and Fourier matching; however, it is

shown to have three potentially important advantages: 1) it is rigor-

ously convergent, 2) the choice of optimum weighting factors greatly

accelerates convergence between a decreasing upper bound and

an increasing lower bound, and 3) it is free from problems of relative

convergence.

I. INTRODUCTION

Recently, there has been a surge of interest in the least squaree

boundary residual technique for the numerical solution of scattering

problems [1], [16], [19]. In this short paper, the same approach

is extended to the solution of eigenvalue problems, and examples
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