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On the Performance of the Least Squares Method for
Waveguide Junctions and Discontinuities

R. JANSEN

«  Abstract—The high computational expenditure of the least squares
boundary residual method restricts its application to certain prob-
lems. It is therefore necessary to utilize the inherent simplicity of
special cases together with convergence-optimization criteria in order
to reduce computational time and storage requirements. The problem
of the coaxial-to-circular waveguide junction is presented as an
illustrative example of how this is performed. A selection criterion is
also suggested to determine the optimum weighting factor.

INTRODUCTION

Attention has lately been directed to the solution of boundary-
value problems by the method of least squares [17], [2], an essen-
tially variational method which was first presented by Picone in
1928 [37]. This method is useful because of its universal applicability,
its ability to produce upper and lower bounds, and its property of
ensured (nonrelative) convergence [17. It allows bounds to be gen-
erated simply by means of varying a weighting factor [17, and in
this compares favorably with the direct application of the calculus
of variations, a technique which requires separate formulations for
each bound [67, [7]. On the other hand, convergence is slower than
that obtained from the Ritz method [37, [4], if one does not take
care of singularities explicitly, and usually large complex matrices
must be dealt with. Therefore, as long as an ¢ priori determination
of the optimum-convergence weighting factor does not exist, it is of
essential importance —ith least squares methods for the program
and the formulation to utilize the simplifications possible in special
cases.

Such special situations prevail, for example, in the following cases:
the planar infinitely thin discontinuity in an otherwise homogeneous
waveguide, structures which exhibit special symmetries, and wave-
guide junctions with pure boundary reduction or enlargement. The
coaxial-to-circular waveguide junction belongs to the latter class
and will now serve to illustrate the time and storage saving perform-
ance of the method.

PERFORMANCE OF THE METHOD

Consider the waveguide junction in Fig. 1 together with the follow-
ing conventional truncated modal expansions for the transverse
field at z = 0:
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Fig. 1. Normalized susceptance b versus frequency. Dimensions are:
d =1mm, R; =3 mm, R, =7 mm, relative dielectric constant ¢, = 9.

Here t4,{;1! are the real orthonormalized transverse-vector mode
functions (%! for the TEM mode which is the excitation with ampli-
tude Aot =1; 4¢ = ro); A; and By* denote the corresponding
complex amplitudes; r» = By /Bit = —exp (—2vy;+d) are the mode
reflection coefficients; Zp! and Zm!! represent wave impedances,
and e, is the z-directed unit vector. Because of the rotational sym-
metry of the structure and the excitation field only TMc, modes
have to be taken into account.

For the caleulation of ry or the normalized input admittance
y =4jb= (1 —r)/( +ry), the matrix Mp,y which corresponds
to the positive Hermitian form
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has to be constructed [17, [2]. The quantity Z in (2) is a conver-
gence-optimizing electric-to-magnetic weighting factor.

In addition to reducing the set of mode functions by virtue of
structural symmeiry, it is possible to save computer time by making
use of the fact that the fields in (1) have been split into real ortho-
normal vector functions and complex scalars. This is performed by
first generating a real symmetric auxiliary matrix @ with elements
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containing the complete information about the geometry of the
problem, whereas the frequency-dependent information is included
in the complex values Zr;!, Zri¥, and r, which are stored in linear
arrays.

The splitting procedure indicated above applies for least squares
methods in general. For the special case under consideration, there
is an additional advantage since G contains the (P + 1) X (P 4 1)
identity matrix as a submatrix, indicating that (P + 1) of the
(P + 1+ N) unknown amplitudes can be eliminated. This is a
consequence of the pure boundary enlargement that prevails in the
problem. This property of the matrix G is transferred to the positive
definite Hermitian matrix Cp,x (Mp,x with its first row and column
omitted) insofar as Cp,y possesses a (P 4+ 1) X (P + 1) diagonal
submatrix D. With reference to [1], the set of amplitudes which
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minimizes Fp,y could be calculated from the system of linear
equations
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with the excitation vector vp,n extracted from the first column of
Mp,n. However, elimination of the 4, leads to the equivalent
system
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which is governed by the likewise positive definite Hermitian matrix
Cx of reduced order N X N. Hence the problem may be viewed as
that of minimizing a modified functional ,Fy with corresponding
matrices My and Cu, respectively. As a result, in its solution there
is considerable saving of storage and running time.

SELECTION CRITERION FOR THE
WEIGHTING FACTOR Z

Let N denote the order of the matrix Cy, and E;x,H .y, the cor-
responding approximate field solutions. E;, H, is the exact solution of
the boundary value problem considered. Since for any finite Z the
method ensures convergence of the fields in the mean [17, [37, [4],
there exists an integer number No such that

O<EN ~NEx || S E: — Ewy |} < ex(2)
and
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is satisfied for any N > N, and a given range of Z, with the norms
defined in accordance with (2). In addition, as the boundary operator
representing the problem is defined on the complete set of functions
of finite norm ¢4, the norms of E.,H; must also be bounded [4]
so that the edge condition is not violated as indicated by Davies
in [17].

Convergence of E.y as defined in (6) implies that scalar multi-
plication of E:;n' by &' and term-by-term integration of the series
in (1) are allowed even if the upper summation limit goes to infinity
[4]. Together with the Cauchy-Bunyakovsky inequality [4] this
yields
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With 56 = (1 — re)/(1 4 ro) it can be concluded that the conver-
gence of the approximate susceptance by to its exact value b for any
finite range of Z exists [uniform convergence of by(Z)J, and the
convergence rate of by is in some way governed by that of the
field E i

The slope of the curves by versus matrix size N is defined as

dbn (Z)
aN

= by(Z) — byn(Z). (8)

Henee it follows from Cauchy’s criterion for the existence of a limit
[5], that with
dby (Z)

= |by — b <2
N | by N1 | <
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a minimization of the modulus of the slope with respect to the
weighting factor is necessary in order for the error in by to be small.
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This minimum exists because by with Z is stationary, in agreement
with the remarks of Oraizi and Perini [2]. .

Consider then a range of weighting factors Z; < Z < Z, including
the optimum Z = Z,,; and an integer N = N, which leads to an
inequality of the form (9) for all of these values of Z. N; denotes
a matrix size which is large enough to ensure that |byy — b | < A
with A, < min [ (Z1),e(Z,) ]is valid for a given.required accuracy
of Ae, which is not a function of Z. Under the assumption of mono-
tonical behavior of by (Z) as a function of N, except in the close
vicinity of Z,p:, the slope of by at the beginning of the interval
Ny € N < N, is greater than its mean value given by

1
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This assumption can be justified by the ability of the method to
produce variational bounds [17], and has also been verified by
experience. Hence it follows that
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where the symbol < denotes approximate inequality. The relation
expressed in (11) justifies the selection of the weighting factor Z for
a not too small value of N so that the modulus of the slope of by (Z)
is minimized.

From the curves of the calculated susceptance by(Z) and the
corresponding reflection coefficients ron illustrated in Fig. 2 it can be
seen that the power-conservation prineciple of Oraizi and Perini [2]
is not an optimum criterion for the selection of Z. However, there is
agreement for the values of weighting factors in the range of 0.02-- -
50Z ot

Another more intuitive approach for determining an optimum
value of Z is based on the fact that if the single error contributions in
(2) have the correct weighting physically, then the convergence
must be rapid. Otherwise, the terms containing the electric field
alone would also have to be weighted relative to each other. This
suggests that the weighting factor should be chosen as

I Bt |
Iyl = —r . (12)
R
Zx* converges automatically to the physical ZT as the mode number
N is increased. Zx! can be found by the following iterative procedure:
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Fig. 2. (a) Normalized susceptance b versus matrix size IV for different
Z and near optimum N /P, The dashed and the dotted curves refer to
optimization with Zop; and Zx?, respectively. N/P = 10/6;f = 1 GHz.
(b) Corresponding | r¢ | as a measure of power conservation, f = 1 GHz.
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In actual use it is observed that (13) converges very rapidly, so that
three iterations are sufficient with N = 30 for a wide range of
dimensions and frequencies. Furthermore, in any of the cases con-
sidered the iterated weighting factor Zy! turned out to be of the
order of that Z,,; which was found by minimizing | dbx(Z)/dN |.
For example, in Fig. 2 the values of Zy! and Z,,; differ by a factor
of about 3.5.

NUMERICAL RESULTS

The input admittance ¥ = jb of the resonating structure shown in
Fig. 1 was computed and is plotted as a function of frequency. Series
resonance occurs when the capacitive gap compensates the input
impedance of the propagating circular Fo mode. The validity of the
program has been tested by comparison with Marcuvitz’ results for
the capacitive gap at low frequencies, which is same as the problem
considered here with ¢, = 1 [87]. Generation of the orthonormalized
functions t.I, 11, and the elements of the matrix G takes about 30 s
of CPU time on a CDC-6400 computer for the sum of the modes
N + P = 80. The CPU time required for the generation and inver-
sion of a 50 X 50 complex Cy-matrix is about 5 s.

Fig. 2 shows the dependence of the least squares solution by on
weighting factor Z and mode number N. At the same time an error
estimate is provided, since a change of sign exists for the slope of
by (Z). For comparison, the deviation of |rw(Z) | from its ideal
value | 7| = 1 is also plotted as a measure of power conservation
in Fig. 2.

The dashed curve in Fig. 2 refers to susceptances which were
computed by minimizing | dbx(Z) /dN | with respect to Z at given
values of N. The utilization of the iterated weighting factor Zyt
requires less computer time and results in the dotted curve.

In addition to this, the influence of the upper summation limits N
and P on the convergence rate has been studied because the ratio
N/P plays an important role for methods which exhibit relative
convergence phenomena [97], [10]. In Fig. 3 the dependence of
by on this ratio is shown as a function of the mode number N. The
trend of the minimum value of Fy decreasing with N for a fixed
Z = Zop as seen from Fig. 3 serves as a measure of the convergence
rate. It has been found generally that it is sufficient to choose N/P in
accordance with point-matching methods, so that in the present
case, the near-optimum value of N/P = R./(R. — R.) lies between
10/56 and 10/6. This coincides with the behavior of Fy shown in
Fig. 3 having its maximum average slope Fio/Fs around this ratio
of N/P.
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Fig. 3. (a) Influence of the N /P ratio on the convergence of b for near
optimum Z, Z/Z: =8; f =1 GHz. (b) Corresponding Hermitian
forms Fy. The average slope Fi9/F5 serves as a measure of convergence.
f =1GHz.
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The Solution of Electromagnetic Eigenvalue Problems
by Least Squares Boundary Residuals

HUGH J. A. LARIVIERE anp
J. BRIAN DAVIES, MEMBER, IEEE

Abstract—The least squares boundary residual technique as used
for the numerical solution of scattering problems is extended to the
solution of electromagnetic eigenvalue problems. The theory is de-
scribed and numerical results are given for the solution of an L-
shaped membrane and microstrip in a hollow conducting guide. The
microstrip example was chosen as a test case to compare with Fourier
matching. This least square error mimimization technique is of the
same family as point matching and Fourier matching; however, it is
shown to have three potentially important advantages: 1) it is rigor-
ously convergent, 2) the choice of optimum weighting factors greatly
accelerates convergence between a decreasing upper bound and
an increasing lower bound, and 3) it is free from problems of relative
convergence.

I. INTRODUCTION

Recently, there has been a surge of interest in the least squares
boundary residual technique for the numerical solution of scattering
problems [17],[16],[19]. In this short paper, the same approach
is extended to the solution of eigenvalue problems, and examples
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